Please use this identifier to cite or link to this item:
Title: 3D characterization of diffusivities and its impact on mass flux and concentration overpotential in SOFC anodes
Keywords: Energy;0303 Macromolecular And Materials Chemistry;0306 Physical Chemistry (Incl. Structural);0912 Materials Engineering
Issue Date: 31-Jan-2017
Publisher: Electrochemical Society
Description: In recent years great effort has been taken to understand the effect of gas transport on the performance of electrochemical devices. This study aims to characterize the diffusion regimes and the possible inaccuracies of the mass transport calculation in Solid Oxide Fuel Cell (SOFC) anodes when a volume-averaged pore diameter is used. 3D pore size distribution is measured based on the extracted pore phase from an X-ray CT scan, which is further used for the calculation of a Knudsen number (Kn) map in the porous medium, followed by the voxel-based distribution of the effective diffusion coefficients for different fuel gases. Diffusion fluxes in a binary gas mixture using the lower boundary, upper boundary and average effective coefficients are compared, and the impact on overpotential is analyzed. The results show that pore diameters from tens to hundreds of nanometers result in a broad range of Knudsen number (1.1 ??? 4.8 and 0.6 ??? 3 for H2 and CH4 respectively), indicative of the transitional diffusion regime. The results highlight that for a porous material, such as an SOFC anode where Knudsen effects are non-negligible, using a volume-averaged pore size can overestimate the mass flux by ??200% compared to the actual value. The characteristic pore size should be chosen sensibly in order to improve the reliability of the mass transport and electrochemical performance evaluation.
Other Identifiers:
Type Of Material: OTHER
Appears in Collections:Faculty of Engineering

Files in This Item:
Click on the URI links for accessing contents.

Items in HannanDL are protected by copyright, with all rights reserved, unless otherwise indicated.