Please use this identifier to cite or link to this item: http://dl.pgu.ac.ir/handle/Hannan/70676
Title: Experimental study of differentially rotating supersonic plasma flows produced by aluminium wire array Z-pinches
Issue Date: 4-Oct-2016
May-2015
Oct-2015
Publisher: Imperial College London;Physics
Description: A novel approach to cylindrical wire array z-pinches has been developed in order to create a rotating plasma flow analogous to astrophysical accretion discs. The method involves subjecting the wire array to a cusp magnetic field (B_r) to create converging off axis ablation streams to form a rotating flow. The rotation is sustained by the ram pressure of the ablation streams in a quasi-equilibrium state for approximately 150 ns. This corresponds to one full rotation of the plasma about the axis. The rotating plasma is supersonic with Mach number ~2 and a radially constant rotation velocity between 60 and 75 km/s; the angular velocity therefore has an r^-1 dependence and the flow is differential. A Thomson scattering diagnostic is used to measure the electron and ion temperatures as Te ~30 eV and Ti >55 eV and the ionisation of the plasma (Z) between 6 and 8. These parameters are used to calculate the Reynolds number (10^5 to 10^6) and magnetic Reynolds numbers (20 to 100) which are large enough for viscous and resistive effects to be negligible on the large scale of the flow. These are of sufficient magnitude for the experiment to be scalable to astrophysical accretion discs. Further more the Reynolds number for the experiment is large enough for shear instabilities to manifest in the plasma. Some evidence for this can be seen in XUV images and Thomson spectra which indicate the development of perturbations and vorticity within the flow. Predictions for the growth rate of the Kelvin Helmholtz instability, 12 to 40 ns, agree reasonably well with the observed perturbation growth of ~30 ns. It is also possible that shear instabilities are driving hydrodynamic turbulence. Turbulent heating of the plasma could explain the approximately 500 eV increase in the ion temperature observed from some Thomson spectra. Further work is required however to prove the existence of shear flows and turbulence within the experiments.;Open Access
Other Identifiers: http://hdl.handle.net/10044/1/41052
EP/G001324/1
DE-F03-02NA00057
DE-SC-0001063
Type Of Material: OTHER
OTHER
OTHER
Appears in Collections:Physics

Files in This Item:
Click on the URI links for accessing contents.


Items in HannanDL are protected by copyright, with all rights reserved, unless otherwise indicated.