Collection home page  Mathematics, Department of

RSS Feed


PreviewIssue DateTitleContributor(s)
-A Construction of H 4 without MiraclesDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA jrs@umich.edu, US; Ann Arbor
-Stable Manifolds and Homoclinic Points Near Resonances in the Restricted Three-Body ProblemDepartment of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, U.S.A.; Ann Arbor
-On a problem of H. N. GuptaDepartment of Mathematics, University of Michigan, 48109-1003, Ann Arbor, MI, USA; Department of Integrative Studies, Arizona State University West, 85069-7100, Phoenix, AZ, USA; Ann Arbor
-Collapsing and Dirac-Type OperatorsDepartment of Mathematics, University of Michigan, Ann Arbor, MI, 48109-1109, U.S.A.; Ann Arbor
-On the Canonical Decomposition of Quiver RepresentationsDepartment of Mathematics, University of Michigan, 525 E University, Ann Arbor, MI, 48109–1109, U.S.A; Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, U.S.A; Ann Arbor
-Computing Mixed Discriminants, Mixed Volumes, and PermanentsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA barvinok@math.lsa.umich.edu, US; Ann Arbor
-A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine ConstraintsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA barvinok@math.lsa.umich.edu, US; Ann Arbor
-Lefschetz Motives and the Tate ConjectureDepartment of Mathematics, University of Michigan, Ann Arbor, MI, 48109–1109, U.S.A. e-mail; Ann Arbor
-Rational Surfaces with Many NodesDepartment of Mathematics, University of Michigan, Ann Arbor, MI, 48109, U.S.A.; CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649–003, Lisboa, Portugal; Dipartimento di Matematica, Università di Pisa, Via Buonarroti, 2, 56127, Pisa, Italy; Ann Arbor
-Elementary abelian p -subgroups of algebraic groupsDepartment of Mathematics, University of Michigan, 48109, Ann Arbor, MI, U.S.A.; Ann Arbor
-Comparison of symbolic and ordinary powers of idealsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109–1109, USA (e-mail: hochster@umich.edu), US,; Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA (e-mail: huneke@math.ukans.edu), US,; Ann Arbor
-Vascular tumor growth and treatment: Consequences of polyclonality, competition and dynamic vascular supportUniversity of Michigan, Department of Mathematics, 525 E. University Ann Arbor, MI 48109-1109, USA. e-mail: tjacks@math.lsa.umich.edu, US; Ann Arbor
-Stable manifolds of holomorphic diffeomorphismsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA, US,; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA, US,; Ann Arbor
-On finite group actions on reductive groups and buildingsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (e-mail: gprasad@math.lsa.umich.edu), US,; Department of Mathematics, University of Maryland, College Park, MD 20742, USA (e-mail: yu@math.umd.edu), US,; Ann Arbor
-Uniform bounds and symbolic powers on smooth varietiesDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (email: rlaz@math.lsa.umich.edu; kesmith@math.lsa.umich.edu), US,; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (email: rlaz@math.lsa.umich.edu; kesmith@math.lsa.umich.edu), US,; Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street (M/C 249), Chicago, IL 60607-7045, USA (email: ein@math.uic.edu), US,; Ann Arbor
-Non-Existence of Black Hole Solutions¶for a Spherically Symmetric, Static Einstein–Dirac–Maxwell SystemMathematics Department, The University of Michigan, Ann Arbor, MI 48109, USA.¶E-mail: smoller@umich.edu, US,; Mathematics Department, Harvard University, Cambridge, MA 02138, USA.¶E-mail: yau@math.harvard.edu, US,; {Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, 04103 Leipzig, Germany.¶E-mail: Felix.Finster@mis.mpg.de, DE,; Ann Arbor
-Non-Formation of Vacuum States for Compressible Navier–Stokes EquationsDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, US,; Department of Mathematics, Indiana University, Bloomington, IN 47405, USA, US,; Ann Arbor
-The Weyl Quantization and the Quantum Group Quantization of the Moduli Space of Flat SU (2)-Connections on the Torus are the SameDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA. E-mail: uribe@math.lsa.umich.edu, US; Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA. E-mail: rgelca@math.ttu.edu, US; Ann Arbor
-Algebraic limits of Kleinian groups which rearrange the pages of a bookDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, US,; Department of Mathematics, Rice University, Houston, TX 77251, USA , US,; Ann Arbor
-Extendability of Solutions of the Einstein–Yang/Mills EquationsUniversity of Michigan, Mathematics Department, Ann Arbor, MI 48109-1109, USA, RO,; University of Michigan, Mathematics Department, Ann Arbor, MI 48109-1109, USA, RO,; Ann Arbor