جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://dl.pgu.ac.ir/handle/Hannan/113796
Title: Thin viscous ferrofluid film in a magnetic field
Keywords: Science & Technology;Technology;Physical Sciences;Mechanics;Physics, Fluids & Plasmas;Physics;INCLINED PLANE;SURFACE-WAVES;LIQUID-FILMS;STABILITY;DYNAMICS;INSTABILITY;EVOLUTION;FLUID;Fluids & Plasmas; Mathematical Sciences;Physical Sciences;Engineering
Issue Date: 1-Feb-2017
Publisher: AIP Publishing
Description: We consider a thin, ferrofluidic film flowing down an inclined substrate, under the action of a magnetic field, bounded above by an inviscid gas. Its dynamics are governed by a coupled system of the steady Maxwell???s, the Navier-Stokes, and the continuity equations. The magnetization of the film is a function of the magnetic field and may be prescribed by a Langevin function. We make use of a long-wave reduction in order to solve for the dynamics of the pressure and velocity fields inside the film. In addition, we investigate the problem in the limit of a large magnetic permeability. Imposition of appropriate interfacial conditions allows for the construction of an evolution equation for the interfacial shape via use of the kinematic condition. The resultant one-dimensional equations are solved numerically using spectral methods. The magnetic effects give rise to a non-local contribution. We conduct a parametric study of both the linear and nonlinear stabilities of the system in order to evaluate the effects of the magnetic field. Through a linear stability analysis, we verify that the Maxwell???s pressure generated from a normally applied magnetic field is destabilizing and can be used to control the size and shape of lobes and collars on the free surface. We also find that in the case of a falling drop, the magnetic field causes an increase in the velocity and capillary ridge of the drop.
URI: http://dl.pgu.ac.ir/handle/Hannan/113796
Other Identifiers: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000362570800022&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
1089-7666
http://hdl.handle.net/10044/1/43877
http://dx.doi.org/10.1063/1.4930010
Type Of Material: Other
Appears in Collections:Chemical Engineering

Files in This Item:
There are no files associated with this item.


تمامی کاربرگه ها در کتابخانه ی دیجیتال حنان به صورت کامل محافظت می شوند.