جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://dl.pgu.ac.ir/handle/Hannan/113782
Title: Radiative transfer of acoustic waves in continuous complex media: beyond the Helmholtz equation
Keywords: physics.class-ph;physics.class-ph;Fluids & Plasmas; Mathematical Sciences;Physical Sciences;Engineering
Issue Date: 10-Jan-2017
Publisher: American Physical Society
Description: Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed c depending on position r. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path ℓ^{*}, scattering phase function f, and anisotropy factor g. Discarding the operator term in the wave equation is shown to have a significant impact on f and g, yet limited to the low-frequency regime, i.e., when the correlation length of the disorder ℓ_{c} is smaller than or comparable to the wavelength λ. More surprisingly, discarding the operator part has a significant impact on the transport mean-free path ℓ^{*} whatever the frequency regime. When the scalar and operator terms have identical amplitudes, the discrepancy on the transport mean-free path is around 300% in the low-frequency regime, and still above 30% for ℓ_{c}/λ=10^{3} no matter how weak fluctuations of the disorder are. Analytical results are supported by numerical simulations of the wave equation and Monte Carlo simulations.
URI: http://dl.pgu.ac.ir/handle/Hannan/113782
Other Identifiers: http://www.ncbi.nlm.nih.gov/pubmed/27967071
1539-3755
http://hdl.handle.net/10044/1/43458
http://dx.doi.org/10.1103/PhysRevE.94.053005
Type Of Material: Other
Appears in Collections:Chemical Engineering

Files in This Item:
There are no files associated with this item.


تمامی کاربرگه ها در کتابخانه ی دیجیتال حنان به صورت کامل محافظت می شوند.